Decision Support System In Detrmination of Project Tender Winner at IAIN Bukittinggi Using the Analytical Hierarchy Process (AHP) Method - 2

by Firdaus Annas

Submission date: 16-Feb-2020 02:24PM (UTC+0700) Submission ID: 1258143424 File name: tinggi_Using_the_Analytical_Hierarchy_Process_AHP_Method_-_2.doc (527K) Word count: 2041 Character count: 11016

Decision Support System In Detrmination of Project Tender Winner at IAIN Bukittinggi Using the Analytical Hierarchy Process (AHP) Method

Firdaus Annas Faculty of Education and Teaching Institut Agama Islam Negeri (IAIN) Bukittinggi Bukittinggi, Indonesia firdaus@iainbukittinggi.ac.id

Iswantir Iswantir Faculty of Education and Teaching Institut Agama Islam Negeri (IAIN) Bukittinggi Bukittinggi, Indonesia iswantir@iainbukittinggi.ac.id

Zulfani Sesmiarni Faculty of Education and Teaching Institut Agama Islam Negeri (IAIN) Bukittinggi Bukittinggi, Indonesia zulfanisesmiarni@iainbukittinggi.ac.id

Abstract - Decision Support System (DSS) is a system that can help someone in making accurate and targeted decisions. Many problems can be solved by using DSS, one of which is the determination in the winner of the project tender. There are several methods that can be used in building a DSS, including Analytic Hierarchy Process (AHP). AHP is the most wide used method in solving multi-criteria problems, such as in determining t 4 winner of a project tender. This study uses the AHP method in determining the winner of a project tender the Procurement Services Unit (ULP) IAIN Bukittinggi. In determining the winner of a tender, there are several criteria that form the basis of decision making including administrative evaluation, technical evaluation, price evaluation and qualification evaluation. From the four criteria, it is processed according to alternative data, namely bidders. The application used in determining the winner of this tender is the Expert Choice software. The final results in this study are the results of global priority criteria that are sorted from highest to lowest, so that the committee can determine the winner of the tender.

Keywords - Decision Support System, Analytic Hierarchy Process, Project Tender, Expert Choice software.

I. INTRODUCTION

The decision support system is an interactive information system that provides information, modeling and data manipulation. Decision support system is part of the information system used to support in making a decision by a 13 npany or organization. Many methods used in this decision support system include the Analytical Hierarchy Process (AHP) method[1]. This method can help decision making that is quite complex with a multi-criteria system.

One of the decision support systems is determining the 4 inner of the project tender. During this time the process of determining the winner of the project tender is still based on considerations that are influenced by subjective factors[2], so that the results of the decisions obtained do not satisfy the parties concerned. With the existence of a decision support system using the AHP method, it can produce a fair, objective and transparent tender winner decision[3].

II. LITERATURE STUDY AND HYPOTHESIS

For Decision Support Systems many 12ethods can be used, one of the methods used in this study is the Analytical Hierarchy Process (AHP) method. The concept of the AHP method is to change qualitative values into quantitative values. So the decisions made can be more objective. At this time the AHP method has also been used by several researchers, for example for Web GIS determination of business potential[4], in the selection of outstanding employees using the analytical hieararchy (AHP) process method (Case Study: PT. Capella Dinamik Nusantara Takengon)[5], and \overline{A} decision support system for supplier selection using an integrated analytic hierarchy process and linear programming[6].

Basically the steps in the AHP method include:

- 1. Determine the types of criteria that will be
- requirements to choose the items to be loaded first.
- requirements to choose the neuronal and a paired matrix.
 Arrange the criteria in the form of a paired matrix.
- 3. Add up the 120 lumn matrix
- 4. Calculate the value of the criteria column element by the formula for each column element divided by the number of column matrices.
- 5. Calculate the priority value of the criteria with the formula adding up the row matrix of the results of step 4 and the result 5 divided by the number of criteria.
- 6. Determine the alternatives that will be chosen.
- 7. Arrange alternatives that have been determined in the form of a paired matrix for each criterion. So there will be as many as *n* pairs of matrices between alternatives.
- 8. Each matrix pairing between alternatives is n matrixes, each matrix is added per column.
- 9. Calculate the alternative priority values of each paired matrix between alternatives with formulas such as step 4 and step 5.
- 10. Test the consistency of each paired matrix between alternatives with the formula of each paired matrix element in step 2 multiplied by the priority value of the creation. The results of each row are added up, then the

Please do not give the page number in the header or footer.

results are divided by each creative priority value as many times $\lambda_1,\lambda_2,\lambda_3,\ldots,\lambda_n$

11. Calculate Lamda max with a formula

$$\lambda \max = \frac{\sum \lambda}{n}$$

12. Calculate CI With a Formula

$$CI = \frac{\lambda max}{n-1}$$

13. Calculate *CR* With a Formula $CR = \frac{CI}{RI}$

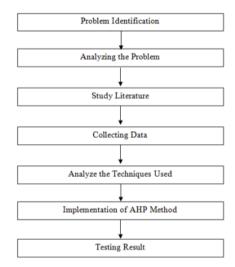

Where CR is a value derived from a random table such as table 1.

TABLE I. RANDOM INDEX

N	1	2	3	4	5	6	7	8	9	10	11
RI	0,00	0,00	0,58	0,901	1,12	1,24	1,32	1,41	1,45	1,49	1,51

III. RESEARCH METHODS

By paying attention to the scope of research activities in terms of the period of time for conducting research activities, how to obtain the information needed, research objectives and refer further to the views of a 11 her of experts. This research is descriptive, because the purpose of this research is how to implement AHP to determine the winner of the project tender by carrying out several stages as shown in the following figure;

IV. RESULTS AND DISCUSSION

In the process of determining the winner of a project tender by using the DSS AHP goal method that will be

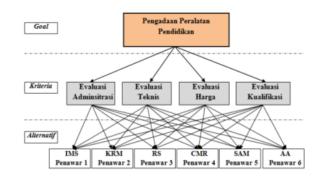
generated is the selection of one tender winner from several tender participants.

For the process of testing this manual calculation system, the author uses the AHP application, Expert Choice. This software will provide proof whether the search performed is correct.

The steps in this research are:

1. Determine Criteria and Alternatives

In the hierarchy there are main objectives, criteria and alternatives that will be discussed. In determining the criteria and alternatives, the writer conducts direct interviews with the committee so that the following criteria can be obtained, administrative evaluation, technical evaluation, price evaluation and qualification evaluation, while the alternatives are bidder 1 (IMS), bidder 2 (KRM), bidder 3 (RS) , bidder 4 (CMR), bidder 5 (SAM) and bidder 6 (AA).


TABLE II. LIST OF CRITERIA

No	Code	Criteria
1	EA	Administrative Evaluation
2	ET	Technical Evaluation
3	EH	Price Evaluation
4	EK	Qualification Evaluation

TABLE III. LIST OF CRITERIA

No	Code	Alternative
1	IMS	Offers 1
2	KRM	Offers 2
3	RS	Offers 3
4	CMR	Offers 4
5	SAM	Offers 5
6	AA	Offers 6

The composition of criteria and alternatives in a hierarchy consisting of 4 criteria and 6 alternatives can be seen in the following figure.

2. Arrange a pair matrix between criteria.

The steps in calculating this comparison are based on the AHP formula discussed above. The AHP formula is used to find quality on alternatives and criteria. To find the quality of each criterion, data will be collected and then entered into a comparison matrix like this table.

> TABLE IV. COMPARATIVE COMPARISON MATRIC EVERY CRITERIA

After obtaining the weight of each criterion, then the
consistency index and consistency ratio to determine
whether the comparison data is consistent or not. If the CR
value <0.1 then the data is said to be consistent and can be
continued, but if the CR> 0.1 then the data is inconsistent
and the comparison of matrix values must be repeated.

16

TABLE IX.	CRITERIA RANK

a		
Criteria	Weight	Rank
Administrative Evaluation	0,34722	1
Technical Evaluation	0,23611	2
Price Evaluation	0,23611	3
Qualification Evaluation	0,18056	4

	EA	ET	EH	EK
EA	1	2	2	1
ET	0,5	1	1	2
EH	0,5	1	1	2
EK	1	0,5	0,5	1
Jml	3	4,5	4,5	6

TABLE V. MATRIC IN DECIMAL

	EA	ET	EH	EK
EA	0,33333	0,44444	0,44444	0,16667
ET	0,16667	0,22222	0,22222	0,33333
EH	0,16667	0,22222	0,22222	0,33333
EK	0,33333	0,11111	0,11111	0,16667

TABLE VI. MATRIC IN DECIMAL

	EA	ET	EH	EK
EA	0,33333	0,33333	0,44444	0,16667
ET	0,16667	0,22222	0,22222	0,33333
EH	0,16667	0,22222	0,22222	0,33333
EK	0,33333	0,11111	0,11111	0,16667
Jml	1,00000	1,00000	1,00000	1,00000

Addition Result Matrix for each column

TABLE VII. THE SUM OF EACH COLUMN

	EA	ET	EH	EK	JML	BOBOT
EA	0,33333	0,44444	0,44444	0,16667	1,38889	0,34722
ET	0,16667	0,22222	0,22222	0,33333	0,94444	0,23611
EH	0,16667	0,22222	0,22222	0,33333	0,94444	0,23611
EK	0,33333	0,11111	0,11111	0,16667	0,72222	0,18056
JML	1,00000	1,00000	1,00000	1,00000	4,00000	1,00000

Determining the value of [A] and [B]

TABLE VIII.

QUALITY VALUE OF [A] AND [B]

	Weight	Α	В
EA	0,34722	1,47222	4,24000
ЕТ	0,23611	1,00694	4,26471
EH	0,23611	1,00694	4,26471
EK	0,18056	0,76389	4,23077
Amount	1,00000	4,25000	17,00018

3. Arrange the pairing matrix for alternative levels.

a. Pairwise Comparison Metrics of Administrative Evaluation Criteria to the Alternatives

The method and formula used are the same as the search for determining the criteria weights above. With AHP steps, the results obtained from the scoring manual calculation like the following table:

Pairwise comparison of administrative evaluation criteria against alternatives.

TABLE X. TABLE X. COMPARISON OF EVALUATION CRITERIA ADMINISTRATION TOWARDS ALTERNATIVES

EA	IMS	KRM	RS	CMR	SAM	AA
IMS	1,00	1,00	1,00	2,00	1,00	2,00
KRM	1,00	1,00	2,00	1,00	2,00	5,00
RS	1,00	0,50	1,00	2,00	3,00	3,00
CMR	0,50	1,00	0,50	1,00	3,00	2,00
SAM	1,00	0,50	0,33	0,33	1,00	2,00
AA	0,50	0,20	0,33	0,50	0,50	1,00
JML	5,00	4,20	5,17	6,83	10,50	15,00

The results of the ranking of administrative evaluation criteria compared to alternatives.

TABLE XI. CRITERIA RANK

Alternative	Weight	Rank
IMS	0,19	3
KRM	0,25	1
RS	0,22	2
CMR	0,17	4
SAM	0,11	5
AA	0,07	6

With a CR value of 0.06 it means <0.1 and can be justified.

 Pairwise Comparison Metrics Administrative Criteria Against Alternatives

Paired comparison data of technical evaluation criteria against alternatives.

TABLE XII. COMPARISON OF TECHNICAL EVALUATION CRITERIA AGAINST ALTERNATIVES

ET	IMS	KRM	RS	CMR	SAM	AA
IMS	1,00	1,00	2,00	1,00	2,00	1,00
KRM	1,00	1,00	1,00	1,00	2,00	1,00
RS	0,50	1,00	1,00	3,00	3,00	2,00
CMR	1,00	1,00	0,33	1,00	3,00	2,00
SAM	0,50	0,50	0,33	0,33	1,00	2,00
AA	1,00	1,00	0,50	0,50	0,50	1,00

The results of the ranking of the tanking of the tanking of the tanking of the tanking against alternatives can be seen in the following table.

TABLE XIII.	THE RANK OF TECHNICAL EVALUATION CRITERIA
	AGAINST ALTERNATIVES

Kriteria	Bobot	Rangking
IMS	0,20	2
KRM	0,17	4
RS	0,23	1
CMR	0,18	3
SAM	0,10	6
AA	0,12	5

With a CR value of 0.08 it means <0.1 and can be justified.

c. Pairwise Comparison Metrics of Administrative Prices Against Alternatives

Data pairwise comparison of price evaluation criteria against alternatives.

TABLE IX.	COMPARISON OF PRICE EVALUATION AGAINST
	ALTERNATIVES

EH	IMS	KRM	RS	CMR	SAM	AA
IMS	1,00	1,00	2,00	1,00	3,00	9,00
KRM	1,00	1,00	1,00	1,00	1,00	6,00
RS	0,50	1,00	1,00	3,00	3,00	3,00
CMR	1,00	1,00	0,33	1,00	3,00	5,00
SAM	0,33	1,00	0,33	0,33	1,00	5,00
AA	0,11	0,17	0,33	0,20	0,20	1,00

The results of the ranking of the evaluation criteria of price against alternative.

TABLE X. RANK OF PRICE EVALUATION CRITERIA AGAINST ALTERNATIVE

Alternative	Weight	Rank
IMS	0,26	1

KRM	0,18	4
RS	0,23	2
CMR	0,18	3
SAM	0,11	5
AA	0,04	6

With a CR value of 0.08 it means <0.1 and can be justified.

d. Pairwise Comparison Metrics for Evaluation of Qualifications toward Alternatives

Paired comparison data on qualification evaluation criteria against all alternatives.

TABLE XI. COMPARISON OF QUALIFICATION EVALUATION CRITERIA AGAINST ALTERNATIVE

EK	IMS	KRM	RS	CMR	SAM	AA
IMS	1,00	1,00	1,00	1,00	1,00	1,00
KRM	1,00	1,00	1,00	1,00	1,00	1,00
RS	1,00	1,00	1,00	3,00	5,00	3,00
CMR	1,00	1,00	0,33	1,00	3,00	3,00
SAM	1,00	1,00	0,20	0,33	1,00	1,00
AA	1,00	1,00	0,33	0,33	1,00	1,00

The results of the ranking of criteria for evaluation of qualifications against all alternatives.

The Rank of Qualification Evaluation Criteria Against Alternatives

TABLE XII. QUALIFICATION EVALUATION CRITERIA AGAINST ALTERNATIVES

Alternative	Weight	Rank
IMS	0,15	3
KRM	0,15	3
RS	0,29	1
CMR	0,19	2
SAM	0,10	6
AA	0,11	5

With a CR value of 0.08 it means <0.1 and can be justified.

After all alternatives have been processed and analyzed, then all the recapitulation of ranks obtained from the total weight obtained from each alternative are as described in table 8 below. From the total ranks we can draw conclusions that CV. Rivindo Solution became the first rank in the bidding process.

TABLE XIII.

TOTAL OF ALTERNATIVE RANK

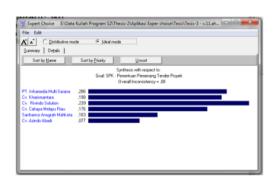
			E	valuatio	n Criter	ia				
Company	Admini Evalu		Tech Evalu			ice sation	Kualifi Evalu		Amount	Rank
	0,347	Rank	0,236	Rank	0,236	Rank	0,181	Rank		
IMS	0,192	3	0,200	2	0,263	1	0,154	3	0,204	2
KRM	0,249	1	0,168	4	0,183	4	0,154	3	0,197	3
RS	0,215	2	0,233	1	0,225	2	0,293	1	0,236	1
CMR	0,167	4	0,179	3	0,185	3	0,187	2	0,177	4
SAM	0,110	5	0,102	6	0,110	5	0,103	6	0,107	5
AA	0,067	6	0,118	5	0,035	6	0,109	5	0,079	6

From the manual calculation above, the author has conducted a test with a computer system using Expert Choice software with the same results. Following can be seen the priority results of each alternative to all the existing criteria.

1. Comparison of priority administrative criteria against all alternatives

Comparison of priority technical criteria against all alternatives.

Die 188 gewarment gine for Josh	N	
1 2 3 2 4 K F		
	B)	
Satisfare Satisfiels	par l' tenja	
Number officerated in Coal SN. Presentant Presences Tender Historica Televis		
T Infraredia Talli Genera		
	a	
1. Selvenedia Publi Serana	л л	
1. Selvenedia Publi Serana		
FL Schwarzells Field Sarana To Machenantian Co Romali Schiller Co Calego Malaya Nas		
PL Jahannelle Publi Sarana Ta Mantesantara Ca Gange Halaya Ma Sarang Halaya Matala		


3. Comparison of priority price criteria for all alternatives

 Comparison of priority criteria for qualifications against all alternatives.

5. The results of the project tender winner are based on a system test using the Expert Choice application.

V. CONCLUSIONS

From the manual process above, the order of winning project tenders is obtained based on the value of comparisons between each criteria and alternatives. Where is CV. Rivindo Solution became the first rank in the winner of the tender for the procurement of educational equipment at IAIN Bukittinggi. After testing with the expert choice application, the same results were obtained.

REFRERENCE

- D. Setiyadi, "Penilaian Kinerja Dosen dengan Menggunakan Metode Analytic Hierarchy Process (AHP) pada STIE Ahmad Dahlan Jakarta," *ESIT J. Elektron. T* 6 Inform., vol. 7, no. 2, 2012.
 B. L. Diana Laily Fithri, "Sistem Pendukung Keputusan Untuk
- [2] B. L. Diana Laily Fithri, "Sistem Pendukung Keputusan Untuk Pemberian Bantuan Usaha Mikro Dengan Metode Simple Additive Seighting," *Maj. Ilm. Inform.*, vol. 3, no. 2, 2012.
- [3] D. R. Sari, A. P. Windarto, D. Hartama, and S. Solikhun, "Sistem Pendukung Keputusan untuk Rekomendasi Kelulusan Sidang Skripsi Menggunakan Metode AHP-TOPSIS," *J. Teknol. dan Sist. Komput.*, vol. 6, no. 1, p. 1, Jan. 2018 10
- [4] R. Agustiawan, "Web GIS Penentuan Potensi Usaha Menggunakan Metode Analytic 5 lierarchy Peocess (AHP)," UNG Repos., 2014.
 [5] Kamalia Safitri, "Sistem Pendukung Keputusan Pemilihan Karyawan
- [5] Kamalia Safitri, "Sistem Pendukung Keputusan Pemilihan Karyawan Berprestasi dengan Menggunakan Metode Analytical Hieararchy Process (Studi Kasus: Pt.Capella Dinamik Nusantara Takengon),"
 Media Inform. Budidarma, vol. 1, no. 1, 2017.
- [6] S. H. Ghodsypour and C. O'Brien, "A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming," *Int. J. Prod. Econ.*, vol. 56–57, pp. 199–212, Sep. 1998.

Decision Support System In Detrmination of Project Tender Winner at IAIN Bukittinggi Using the Analytical Hierarchy Process (AHP) Method - 2

ORIGIN	ALITY REPORT	
_		W UDENT PAPERS
PRIMAR	Y SOURCES	
1	syslab.korea.ac.kr Internet Source	2%
2	iopscience.iop.org	2%
3	jurnal.uisu.ac.id Internet Source	2%
4	Submitted to Imperial College of Science, Technology and Medicine Student Paper	1%
5	tunasbangsa.ac.id	1%
6	journals.usm.ac.id	1%
7	Submitted to UIN Syarif Hidayatullah Jakarta Student Paper	1%
8	docplayer.info Internet Source	1%

Dudih Gustian, Ria Dewi Hundayani. 1% 9 "Combination of AHP Method with C4.5 in the level classification level out students". 2017 International Conference on Computing, Engineering, and Design (ICCED), 2017 Publication Internet Source <1% 10 <**1**% doczz.net 11 Internet Source <1% Purbandini, R P Pratama, Susmiandri. 12 "Application of GIS for the mapping of landslidevulnerable areas by through android-based Analytical Hierarchy Process (AHP) method in Bantul Regency", IOP Conference Series: Earth and Environmental Science, 2019 Publication Yesni Malau, Ulfa Maulida. "Fuzzy Analytic <1% 13 **Hierarchy Process Untuk Menganalisa Faktor** Pemilihan Teller Terbaik", J-SAKTI (Jurnal Sains Komputer dan Informatika), 2019 Publication Paul N. Finlay, Morteza Forghani. "A <1% 14 classification of success factors for decision support systems", The Journal of Strategic Information Systems, 1998

Publication

15	www.ajer.org	<1%
16	Submitted to University of St Andrews	<1%
17	Submitted to Southampton Solent University Student Paper	<1%
18	Submitted to Wilfrid Laurier University Student Paper	<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	Off		